
1

Trilinos Overview

Michael A. Heroux

Michael A. Heroux
 Sandia National Laboratories

with contributions from many collaborators

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy under contract DE-AC04-94AL85000."

Why Use Mathematical Libraries?

2

§  A farmer had chickens and pigs. There was a total of 60 heads
and 200 feet. How many chickens and how many chickens did
the farmer have?

§  Let x be the number of chickens, y be the number of pigs.
§  Then:

 x + y = 60
 2x + 4y = 200

§  From first equation x = 60 – y, so replace x in second equation:
 2(60 – y) + 4y = 200

§  Solve for y:
 120 – 2y + 4y = 200
 2y = 80
 y = 40

§  Solve for x: x = 60 – 40 = 20.
§  The farmer has 20 chickens and 40 pigs.

3

§  A restaurant owner purchased one box of frozen chicken and
another box of frozen pork for $60. Later the owner purchased 2
boxes of chicken and 4 boxes of pork for $200. What is the cost
of a box of frozen chicken and a box of frozen pork?

§  Let x be the price of a box of chicken, y the price of a box of pork.
§  Then:

 x + y = 60
 2x + 4y = 200

§  From first equation x = 60 – y, so replace x in second equation:
 2(60 – y) + 4y = 200

§  Solve for y:
 120 – 2y + 4y = 200
 2y = 80
 y = 40

§  Solve for x: x = 60 – 40 = 20.
§  A box of chicken costs $20 and a box of pork costs $40.

4

§  A restaurant owner purchased one box of frozen chicken and
another box of frozen pork for $60. Later the owner purchased 2
boxes of chicken and 4 boxes of pork for $200. What is the cost
of a box of frozen chicken and a box of frozen pork?

§  Let x be the price of a box of chicken, y the price of a box of pork.
§  Then:

 x + y = 60
 2x + 4y = 200

§  From first equation x = 60 – y, so replace x in second equation:
 2(60 – y) + 4y = 200

§  Solve for y:
 120 – 2y + 4y = 200
 2y = 80
 y = 40

§  Solve for x: x = 60 – 40 = 20.
§  A box of chicken costs $20. A box of pork costs $40.

5

Problem Statement

Math Translation

Solution Method

Translate Back

Problem Setup

Why Math Libraries?
§ Many types of problems.
§ Similar Mathematics.
§ Separation of concerns:

w Problem Statement.
w Translation to Math.
w Set up problem.
w Solve Problem.
w Translate Back.

6

App

Importance of Math Libraries
§  Computer solution of math problems is hard:

w  Floating point arithmetic not exact:
•  1 + ε = 1, for small ε > 0.
•  (a + b) + c not always equal to a + (b + c).

w  Hi fidelity leads to large problems: 1M to 10B equations.
w  Clusters require coordinated solution across 100 – 1M processors.

§  Sophisticated solution algorithms and libraries leveraged:
w  Solver expertise highly specialized, expensive.
w  Write code once, use in many settings.

§  Trilinos is a large collection of state-of-the-art work:
w  The latest in scientific algorithms.
w  Leading edge software design and architecture.

7

Background/Motivation

8

Op#mal	 Kernels	 to	 Op#mal	 Solu#ons:	
w  Geometry,	 Meshing	 	
w  Discre#za#ons,	 Load	 Balancing.	
w  Scalable	 Linear,	 Nonlinear,	 Eigen,	 	

Transient,	 Op#miza#on,	 UQ	 solvers.	
w  Scalable	 I/O,	 GPU,	 Manycore	

w  R&D	 100	 Winner	
w  9000	 Registered	 Users.	
w  30,000	 Downloads.	
w  Open	 Source.	

w  60	 Packages.	
w  Binary	 distribu#ons:	

w  Cray	 LIBSCI	
w  Debian,	 Ubuntu	
w  Intel	 (in	 process)	

Laptops	 to	
Leadership	 systems	

Applications

§  All kinds of physical simulations:
w  Structural mechanics (statics and dynamics)
w  Circuit simulations (physical models)
w  Electromagnetics, plasmas, and superconductors
w  Combustion and fluid flow (at macro- and nanoscales)

§  Coupled / multiphysics models

§  Data and graph analysis (2D distributions).

10

Trilinos Strategic Goals

§  Scalable Computations: As problem size and processor counts increase, the cost of
the computation will remain nearly fixed.

§  Hardened Computations: Never fail unless problem essentially intractable, in
which case we diagnose and inform the user why the problem fails and provide a
reliable measure of error.

§  Full Vertical Coverage: Provide leading edge enabling technologies through the
entire technical application software stack: from problem construction, solution,
analysis and optimization.

§  Grand Universal Interoperability: All Trilinos packages, and important external
packages, will be interoperable, so that any combination of packages and external
software (e.g., PETSc, Hypre) that makes sense algorithmically will be possible
within Trilinos.

§  Universal Accessibility: All Trilinos capabilities will be available to users of major
computing environments: C++, Fortran, Python and the Web, and from the desktop to
the latest scalable systems.

§  TriBITS Lifecycle: Trilinos will be:
w  Reliable: Leading edge hardened, scalable solutions for each of these

applications
w  Available: Integrated into every major application at Sandia
w  Serviceable: “Self-sustaining”.

Algorithmic
Goals

Software
Goals

Capability Leaders:
Layer of Proactive Leadership

§  Areas:
w  User Experience (W. Spotz) (May 2012).
w  Scalable I/O: (R. Oldfield) (Nov 2010).
w  Framework, Tools & Interfaces (J. Willenbring).
w  Software Engineering Technologies and Integration (R. Bartlett).
w  Discretizations (P. Bochev).
w  Geometry, Meshing & Load Balancing (K. Devine).
w  Scalable Linear Algebra (M. Heroux).
w  Linear & Eigen Solvers (J. Hu).
w  Nonlinear, Transient & Optimization Solvers (A. Salinger).

§  Each leader provides strategic direction across all Trilinos packages
within area.

12

Unique features of Trilinos

§  Huge library of algorithms
w  Linear and nonlinear solvers, preconditioners, …
w  Optimization, transients, sensitivities, uncertainty, …

§  Growing support for multicore & hybrid CPU/GPU
w  Built into the new Tpetra linear algebra objects

•  Therefore into iterative solvers with zero effort!
w  Unified intranode programming model
w  Spreading into the whole stack:

•  Multigrid, sparse factorizations, element assembly…

§  Growing support for mixed and arbitrary precisions
w  Don’t have to rebuild Trilinos to use it!

§  Growing support for huge (> 2B unknowns) problems

13

14

Trilinos’ software organization

15

Trilinos is made of packages
§  Not a monolithic piece of software

w  Like LEGO™ bricks, not Matlab™

§  Each package:
w  Has its own development team and management
w  Makes its own decisions about algorithms, coding style, etc.
w  May or may not depend on other Trilinos packages

§  Trilinos is not “indivisible”
w  You don’t need all of Trilinos to get things done
w  Any subset of packages can be combined and distributed
w  Current public release (11.2) contains 54 of the 60+ Trilinos packages

§  Trilinos top layer framework
w  Not a large amount of source code: ~1.5%
w  Manages package dependencies

•  Like a GNU/Linux package manager

w  Runs packages’ tests nightly, and on every check-in

§  Package model supports multifrontal development

Trilinos Package Summary
Objective Package(s)

Discretizations
Meshing & Discretizations STK, Intrepid, Pamgen, Sundance, ITAPS, Mesquite

Time Integration Rythmos

Methods
Automatic Differentiation Sacado

Mortar Methods Moertel

Services

Linear algebra objects Epetra, Jpetra, Tpetra, Kokkos

Interfaces Thyra, Stratimikos, RTOp, FEI, Shards

Load Balancing Zoltan, Isorropia, Zoltan2

“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika

C++ utilities, I/O, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx, Trios

Solvers

Iterative linear solvers AztecOO, Belos, Komplex

Direct sparse linear solvers Amesos, Amesos2

Direct dense linear solvers Epetra, Teuchos, Pliris

Iterative eigenvalue solvers Anasazi, Rbgen

ILU-type preconditioners AztecOO, IFPACK, Ifpack2

Multilevel preconditioners ML, CLAPS, Muelu

Block preconditioners Meros, Teko

Nonlinear system solvers NOX, LOCA, Piro

Optimization (SAND) MOOCHO, Aristos, TriKota, Globipack, Optipack, ROL

Stochastic PDEs Stokhos

17

Interoperability vs. Dependence
 (“Can Use”) (“Depends On”)

§  Although most Trilinos packages have no explicit
dependence, often packages must interact with some other
packages:
w  NOX needs operator, vector and linear solver objects.
w  AztecOO needs preconditioner, matrix, operator and vector objects.
w  Interoperability is enabled at configure time.
w  Trilinos cmake system is vehicle for:

•  Establishing interoperability of Trilinos components…
•  Without compromising individual package autonomy.
•  Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES option

§  Architecture supports simultaneous development on many
fronts.

Solve Ax = b

A: Known Matrix
b: Known Right-hand-side.
x: Unknown vector (to be computed).

On a Parallel Computer.

18

A First Program

Typical Flow of Epetra Object
Construction

Construct Comm

Construct Map

Construct x Construct b Construct A

•  Any number of Comm objects can exist.
•  Comms can be nested (e.g., serial within MPI).

•  Maps describe parallel layout.
•  Maps typically associated with more than one comp object.
•  Two maps (source and target) define an export/import object.

•  Computational objects.
•  Compatibility assured via common map.

// Header files omitted…
int main(int argc, char *argv[]) {
 MPI_Init(&argc,&argv); // Initialize MPI, MpiComm
 Epetra_MpiComm Comm(MPI_COMM_WORLD);

A Simple Epetra/AztecOO Program

 // ***** Create x and b vectors *****
 Epetra_Vector x(Map);
 Epetra_Vector b(Map);
 b.Random(); // Fill RHS with random #s

// ***** Create an Epetra_Matrix tridiag(-1,2,-1) *****

 Epetra_CrsMatrix A(Copy, Map, 3);
 double negOne = -1.0; double posTwo = 2.0;

 for (int i=0; i<NumMyElements; i++) {
 int GlobalRow = A.GRID(i);
 int RowLess1 = GlobalRow - 1;
 int RowPlus1 = GlobalRow + 1;
 if (RowLess1!=-1)
 A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowLess1);
 if (RowPlus1!=NumGlobalElements)
 A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1);
 A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow);
 }
A.FillComplete(); // Transform from GIDs to LIDs

// ***** Map puts same number of equations on each pe *****

 int NumMyElements = 1000 ;
 Epetra_Map Map(-1, NumMyElements, 0, Comm);
 int NumGlobalElements = Map.NumGlobalElements();

// ***** Report results, finish ***********************
 cout << "Solver performed " << solver.NumIters()
 << " iterations." << endl
 << "Norm of true residual = "
 << solver.TrueResidual()
 << endl;

 MPI_Finalize() ;
 return 0;
}

 // ***** Create/define AztecOO instance, solve *****
 AztecOO solver(problem);
 solver.SetAztecOption(AZ_precond, AZ_Jacobi);
 solver.Iterate(1000, 1.0E-8);

// ***** Create Linear Problem *****
 Epetra_LinearProblem problem(&A, &x, &b);

 Epetra_SerialComm Comm();

Solver Software Stack

Bifurcation Analysis " LOCA"

DAEs/ODEs:"
Transient Problems "

Rythmos"

Eigen Problems:"
Linear Equations:"

 Linear Problems "

AztecOO"
Ifpack, ML, etc..."

Anasazi"

Vector Problems:"
Matrix/Graph Equations:"

Distributed Linear Algebra" Epetra"

Teuchos"

Optimization"

MOOCHO"
Unconstrained:"
Constrained:"

Nonlinear Problems" NOX"

Se
ns

iti
vi

tie
s"

(A
ut

om
at

ic
 D

iff
er

en
tia

tio
n:

 S
ac

ad
o)
"

Phase I packages: SPMD, int/double	
 Phase II packages: Templated	

21

Solver Software Stack

Bifurcation Analysis "

DAEs/ODEs:"
Transient Problems "

Rythmos"

Eigen Problems:"
Linear Equations:"

 Linear Problems "
AztecOO"

Ifpack, "
ML, etc..."

Anasazi"

Vector Problems:"
Matrix/Graph Equations:"

Distributed Linear Algebra" Epetra"

Optimization"

MOOCHO"
Unconstrained:"
Constrained:"

Nonlinear Problems" NOX"

Se
ns

iti
vi

tie
s"

(A
ut

om
at

ic
 D

iff
er

en
tia

tio
n:

 S
ac

ad
o)
"

LOCA"

Phase I packages	
 Phase II packages	

Teuchos"

T-LOCA"

Belos*"

Tpetra*"
Kokkos*"

Ifpack2*, "
Muelu*,etc..."

T-NOX"

Phase III packages: Manycore*, templated	

22

23

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

SAND	 2012-‐9588P	

24

Discre'za'ons	

Trilinos	 Provides	 a	 Full	 Collec#on	 of	 Discre#za#on	 Tools	

	
	
	
	
	
	
	
	
	
	
	
	

FEI,	 Panzer	
user-‐defined	 assignment	 and	 management	 of	 global	 degrees	 of	 freedom;	
assembly	 of	 local	 PDE	 discre#za#on	 data	 into	 distributed	 linear	 systems;	 etc.	

	
	
	
	
	
	
	

Phalanx	
decomposi#on	 of	 complex	 PDE	 systems	 into	 a	 number	 of	
elementary	 user-‐defined	 expressions;	 efficient	 management	
of	 expression	 dependencies;	 hooks	 to	 embedded	 tools,	 etc.	

	
	
	

Intrepid	
local	 (cell-‐based)	 FE/FV/FD	 basis	 defini#on;	
numerical	 integra#on;	 cell	 geometry;	 etc.	

Shards	
defini#on	 of	 cell	 topology	

Developers: Pavel Bochev, Denis Ridzal, Alan Williams,
Roger Pawlowski, Eric, Cyr, others.

25

Rythmos

§  Suite of time integration (discretization) methods
§  Includes: backward Euler, forward Euler, explicit Runge-Kutta,

and implicit BDF at this time.

§  Native support for operator split methods.

§  Highly modular.

§  Forward sensitivity computations will be included in the first
release with adjoint sensitivities coming in near future.

Developers: Curt Ober, Todd Coffey, Roscoe Bartlett

26

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

27

Sacado: Automatic Differentiation

§  Efficient OO based AD tools optimized for element-level computations

§  Applies AD at “element”-level computation

w  “Element” means finite element, finite volume, network device,…

§  Template application’s element-computation code
w Developers only need to maintain one templated code base

§  Provides three forms of AD
w Forward Mode:

•  Propagate derivatives of intermediate variables w.r.t. independent variables forward
•  Directional derivatives, tangent vectors, square Jacobians, when m ≥ n.

w Reverse Mode:

•  Propagate derivatives of dependent variables w.r.t. intermediate variables backwards
•  Gradients, Jacobian-transpose products (adjoints), when n > m.

w Taylor polynomial mode:

w Basic modes combined for higher derivatives.

Developers: Eric Phipps, Carter Edwards (UQ data types)

28

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

29

§  Portable utility package of commonly useful tools:

w  ParameterList class: key/value pair database, recursive capabilities.
w  LAPACK, BLAS wrappers (templated on ordinal and scalar type).
w  Dense matrix and vector classes (compatible with BLAS/LAPACK).
w  FLOP counters, timers.
w  Ordinal, Scalar Traits support: Definition of ‘zero’, ‘one’, etc.
w  Reference counted pointers / arrays, and more…

§  Takes advantage of advanced features of C++:
w  Templates
w  Standard Template Library (STL)

§  Teuchos::ParameterList:
w  Allows easy control of solver parameters.
w  XML format input/output.

Developers: Chris Baker, Roscoe Barlett, Heidi Thornquist, Mike Heroux,
Paul Sexton, Kris Kampshoff, Chris Baker, Mark Hoemmen, many others

Teuchos

30

1Petra is Greek for “foundation”.

Trilinos Common Language: Petra
§  Petra provides a “common language” for distributed

linear algebra objects (operator, matrix, vector)

§  Petra1 provides distributed matrix and vector services.
§  Exists in basic form as an object model:

w  Describes basic user and support classes in UML,
independent of language/implementation.

w  Describes objects and relationships to build and use
matrices, vectors and graphs.

w  Has 2 implementations under development.

31

Petra Implementations

§  Epetra (Essential Petra):
w  Current production version.
w  Restricted to real, double precision arithmetic.
w  Uses stable core subset of C++ (circa 2000).
w  Interfaces accessible to C and Fortran users.

§  Tpetra (Templated Petra):
w  Next generation C++ version.
w  Templated scalar and ordinal fields.
w  Uses namespaces, and STL: Improved usability/efficiency.
w  Builds on top of Kokkos manycore node library.

Developers: Chris Baker, Mike Heroux, Rob Hoekstra, Alan Williams,
Carter Edwards, Mark Hoemmen, Christian Trott, Siva Rajamanickam

32

Kokkos: Node-level Data Classes

§  Manycore/Accelerator data structures & kernels

§  Epetra is MPI-only, Tpetra is MPI+[X+Y].
§  Kokkos Arrays: Details tomorrow.

w  Simple multi-dimensional arrays.
w  User specifies dimensions and size. Library handles all else.
w  Very good general performance.

§  Pretty-good-kernel (PGK) library:
w  Node-level threaded (X) and vector (Y) sparse and dense kernels.
w  Plug replaceable with vendor-optimized libraries.

§  Implement Petra Object Model at Node level:
w  Comm, Map/Perm, Vector/Multivector, RowMatrix, Operator.

Developer: Mike Heroux, Carter Edwards, Christian Trott,
Siva Rajamanickam, etc.

33

Zoltan/Zoltan2
§  Data Services for Dynamic Applications

w  Dynamic load balancing
w  Graph coloring
w  Data migration
w  Matrix ordering

§  Partitioners:
w  Geometric (coordinate-based) methods:

•  Recursive Coordinate Bisection (Berger, Bokhari)
•  Recursive Inertial Bisection (Taylor, Nour-Omid)
•  Space Filling Curves (Peano, Hilbert)
•  Refinement-tree Partitioning (Mitchell)

w  Hypergraph and graph (connectivity-based) methods:
•  Hypergraph Repartitioning PaToH (Catalyurek)
•  Zoltan Hypergraph Partitioning
•  ParMETIS (U. Minnesota)
•  Jostle (U. Greenwich)

Developers: Karen Devine, Eric Boman, Siva R., LeAnn Riesen

34

“Skins”
§  PyTrilinos provides Python access to Trilinos packages

§  Uses SWIG to generate bindings. "
§  Epetra, AztecOO, IFPACK, ML, NOX, LOCA, Amesos and

NewPackage are supported. "

§  CTrilinos: C wrapper (mostly to support ForTrilinos).
§  ForTrilinos: OO Fortran interfaces.

§  WebTrilinos: Web interface to Trilinos

§  Generate test problems or read from file. "
§  Generate C++ or Python code fragments and click-run. "
§  Hand modify code fragments and re-run. "

Developers: Ray Tuminaro, Jonathan Hu, Marzio Sala, Jim Willenbring

Developer: Bill Spotz

Developers: Nicole Lemaster, Damian Rouson

35

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

36

§  Interface to direct solvers for distributed sparse linear
systems (KLU, UMFPACK, SuperLU, MUMPS, ScaLAPACK)

§  Challenges:
w  No single solver dominates
w  Different interfaces and data formats, serial and parallel
w  Interface often changes between revisions

§  Amesos offers:
w  A single, clear, consistent interface, to various packages
w  Common look-and-feel for all classes
w  Separation from specific solver details
w  Use serial and distributed solvers; Amesos takes care of data

redistribution
w  Native solvers: KLU and Paraklete

Developers: Ken Stanley, Marzio Sala, Tim Davis, Siva Rajamanickam

Amesos/Amesos2

37

Belos
§  Next-generation linear solver library, written in templated C++.

§  Provide a generic framework for developing iterative algorithms for solving large-scale,
linear problems.

§  Algorithm implementation is accomplished through the use of traits classes and abstract
base classes:
w  Operator-vector products: Belos::MultiVecTraits, Belos::OperatorTraits
w  Orthogonalization: Belos::OrthoManager, Belos::MatOrthoManager
w  Status tests: Belos::StatusTest, Belos::StatusTestResNorm
w  Iteration kernels: Belos::Iteration
w  Linear solver managers: Belos::SolverManager

§  AztecOO provides solvers for Ax=b, what about solvers for:
w  Simultaneously solved systems w/ multiple-RHS: AX = B
w  Sequentially solved systems w/ multiple-RHS: AXi = Bi , i=1,…,t
w  Sequences of multiple-RHS systems: AiXi = Bi , i=1,…,t

§  Many advanced methods for these types of linear systems
w  Block methods: block GMRES [Vital], block CG/BICG [O’Leary]
w  “Seed” solvers: hybrid GMRES [Nachtigal, et al.]
w  Recycling solvers: recycled Krylov methods [Parks, et al.]
w  Restarting techniques, orthogonalization techniques, …

Developers: Heidi Thornquist, Mike Heroux, Mark Hoemmen,
 Mike Parks, Rich Lehoucq

38

IFPACK/IFPACK2: Algebraic Preconditioners

§  Overlapping Schwarz preconditioners with incomplete
factorizations, block relaxations, block direct solves.

§  Accept user matrix via abstract matrix interface (Epetra
versions).

§  Uses Epetra for basic matrix/vector calculations.

§  Supports simple perturbation stabilizations and condition
estimation.

§  Separates graph construction from factorization, improves
performance substantially.

§  Compatible with AztecOO, ML, Amesos. Can be used by
NOX and ML.

Developers: Marzio Sala, Mike Heroux, Siva Rajamanickam, Alan Williams

39

 ML/Muelu: Multilevel Preconditioners

§  Smoothed aggregation, multigrid and domain decomposition
preconditioning package

§  Critical technology for scalable performance of some key
apps.

§  ML compatible with other Trilinos packages:
w  Accepts user data as Epetra_RowMatrix object (abstract interface).

Any implementation of Epetra_RowMatrix works.

w  Implements the Epetra_Operator interface. Allows ML preconditioners
to be used with AztecOO, Belos, Anasazi.

§  Can also be used completely independent of other Trilinos
packages.

§  Muelu: Next generation ML (talked about tomorrow).

Developers: Ray Tuminaro, Jeremie Gaidamour, Jonathan Hu, Marzio Sala, Chris Siefert

40

Anasazi: Eigensolvers
§  Next-generation eigensolver library, written in templated C++.

§  Provide a generic framework for developing iterative algorithms for solving large-scale
eigenproblems.

§  Algorithm implementation is accomplished through the use of traits classes and
abstract base classes:
w  Operator-vector products: Anasazi::MultiVecTraits, Anasazi::OperatorTraits
w  Orthogonalization: Anasazi::OrthoManager, Anasazi::MatOrthoManager
w  Status tests: Anasazi::StatusTest, Anasazi::StatusTestResNorm
w  Iteration kernels: Anasazi::Eigensolver
w  Eigensolver managers: Anasazi::SolverManager
w  Eigenproblem: Anasazi::Eigenproblem
w  Sort managers: Anasazi::SortManager

§  Currently has solver managers for three eigensolvers:
w  Block Krylov-Schur
w  Block Davidson
w  LOBPCG

§  Can solve:
w  standard and generalized eigenproblems
w  Hermitian and non-Hermitian eigenproblems
w  real or complex-valued eigenproblems

Developers: Heidi Thornquist, Mike Heroux, Chris Baker,
 Rich Lehoucq, Ulrich Hetmaniuk

41

NOX: Nonlinear Solvers

§  Suite of nonlinear solution methods

Implementation"
•  Parallel"
•  OO-C++"
•  Independent of the

linear algebra
package!"

Jacobian Estimation"
•  Graph Coloring"
•  Finite Difference"
•  Jacobian-Free

Newton-Krylov"

MB f xc() Bcd+=
Broyden’s Method"

"
Newton’s Method"

"MN f xc() Jcd+=

 Tensor Method "
"MT f xc() Jcd

1
2
---Tcdd+ +=

Globalizations"
"
"
"
"

Trust Region"
Dogleg"

Inexact Dogleg"

Line Search"
Interval Halving  

Quadratic"
Cubic"

More’-Thuente"

http://trilinos.sandia.gov/packages/nox"

Developers: Tammy Kolda, Roger Pawlowski

42

LOCA
§  Library of continuation algorithms

§  Provides
w  Zero order continuation
w  First order continuation
w  Arc length continuation
w  Multi-parameter continuation (via Henderson's MF Library)
w  Turning point continuation
w  Pitchfork bifurcation continuation
w  Hopf bifurcation continuation
w  Phase transition continuation
w  Eigenvalue approximation (via ARPACK or Anasazi)

Developers: Andy Salinger, Eric Phipps

Accessing and Controlling Trilinos:
Parameter List and Sublists

<ParameterList name=“Stratimikos”>
 <Parameter name="Linear Solver Type" type="string" value=“AztecOO"/>
 <Parameter name="Preconditioner Type" type="string" value="Ifpack"/>
 <ParameterList name="Linear Solver Types">
 <ParameterList name="Amesos">
 <Parameter name="Solver Type" type="string" value="Klu"/>
 <ParameterList name="Amesos Settings">
 <Parameter name="MatrixProperty" type="string" value="general"/>
 ...
 <ParameterList name="Mumps"> ... </ParameterList>
 <ParameterList name="Superludist"> ... </ParameterList>
 </ParameterList>
 </ParameterList>
 <ParameterList name="AztecOO">
 <ParameterList name="Forward Solve">
 <Parameter name="Max Iterations" type="int" value="400"/>
 <Parameter name="Tolerance" type="double" value="1e-06"/>
 <ParameterList name="AztecOO Settings">
 <Parameter name="Aztec Solver" type="string" value="GMRES"/>
 ...
 </ParameterList>
 </ParameterList>
 ...
 </ParameterList>
 <ParameterList name="Belos"> ... </ParameterList>
 </ParameterList>
<ParameterList name="Preconditioner Types">
 <ParameterList name="Ifpack">
 <Parameter name="Prec Type" type="string" value="ILU"/>
 <Parameter name="Overlap" type="int" value="0"/>
 <ParameterList name="Ifpack Settings">
 <Parameter name="fact: level-of-fill" type="int" value="0"/>
 ...
 </ParameterList>
 </ParameterList>
 <ParameterList name="ML"> ... </ParameterList>
 </ParameterList>
</ParameterList>

Linear S
olvers

P
reconditioners

Sublists passed
on to package

code.

Top level parameters

Every parameter
and sublist is

handled by Trilinos
code and is fully

validated!

44

Trilinos Integration into an

Application

Where to start?
http://trilinos.sandia.gov

Building your app with Trilinos

If you are using Makefiles:
§  Makefile.export system

If you are using CMake:
§  CMake FIND_PACKAGE

45

Using CMake to build with Trilinos

§  CMake: Cross-platform build system
w  Similar function as the GNU Autotools

§  Trilinos uses CMake to build
§  You don’t have to use CMake to build with Trilinos
§  But if you do:

w  FIND_PACKAGE(Trilinos …)
w  Example CMake script in hands-on demo

§  I find this much easier than hand-writing Makefiles

46

Export Makefile System
Once Trilinos is built, how do you link against the application?

There are a number of issues:

•  Library link order:
•  -lnoxepetra -lnox –lepetra –lteuchos –lblas –llapack

•  Consistent compilers:
•  g++, mpiCC, icc…

•  Consistent build options and package defines:
•  g++ -g –O3 –D HAVE_MPI –D _STL_CHECKED

Answer: Export Makefile system

48

Trilinos Availability / Information
§  Trilinos and related packages are available via LGPL or BSD.
§  Current release (11.2) is “click release”. Unlimited availability.

§  Trilinos Awards:
w  2004 R&D 100 Award.
w  SC2004 HPC Software Challenge Award.
w  Sandia Team Employee Recognition Award.
w  Lockheed-Martin Nova Award Nominee.

§  More information:
w  http://trilinos.sandia.gov (soon trilinos.org).

§  Annual Forums:
w  Annual Trilinos User Group Meeting in November @ SNL

•  talks and video available for download
w  Spring Developer Meeting, May @ SNL
w  European meeting (First week in June – Next Year: Lugano, Switzerland).
w  SC’XY Linear Algebra Tutorial (with Dongarra, Demmel, Kurzcak).

First Use of Trilinos: Serial App, Parallel Solver
Small Intel Cluster

49 Ask For How-to Tech Report if interested.

50

Trilinos Extreme Scalability
Weak Scaling up to 26.9B Row Matrix

cores rows Assem
(s)

Assem + Load
Complete (s)

Solve (s) Avg iter

128 52.8M 5.05 5.52 6.1 6.1
1024 421M 5.21 5.76 6.4 6.4
8192 3.37B 5.55 6.35 7.6 7.4
65536 26.9B 5.54 6.71 8.3 8.0

•  100 time steps, 2 nonlinear steps per time step; constant CFL
•  137k elements/core
•  Times (sec) and iterations are per nonlinear step

Scaling of CFD to 8.97 billion elements
(coupled momentum matrix with 26.9B rows)

Trilinos/Muelu (Next Generation Preconditioner)

Trilinos for Manycore and Accelerators
Trilinos/ShyLU Manycore Results

S. Rajamanickam, E. G. Boman, and
M. A. Heroux. ShyLU: A hybrid-hybrid

solver for multicore platforms. In
Proceedings of 26th International

Parallel and Distributed Processing
Symposium (IPDPS), Shanghai,

China, May 2012.

Intel Value-Added for Trilinos
• Trilinos relies on industry-standard libraries for performance:

– BLAS/LAPACK: single-node dense linear algebra.
– MPI: Inter-node communication library.
– Sparse kernels: Sparse BLAS.

• Intel provides optimized kernels for all of these needs.
• Trilinos is fully compatible with Intel optimized libraries.

52	

Learn More about Trilinos
Hands-On Tutorial

53

Trilinos website: http://trilinos.sandia.gov

Trilinos Hands-on Tutorial Materials: http://code.google.com/p/trilinos

Trilinos mailing lists: http://trilinos.sandia.gov/mail_lists.html

Trilinos User Group (TUG) meetings (including videos):
http://trilinos.sandia.gov/events/trilinos_user_group_2012
http://trilinos.sandia.gov/events/trilinos_user_group_2011

Summary

• Trilinos provides state-of-the-art solver libraries on
state-of-the-art parallel computers.

• Trilinos is the largest single collection of scalable
solvers and supporting capabilities in the world.

• Trilinos provides a modern, modular software
architecture for reliable, robust parallel computations.

• Trilinos provide portable performance across all
modern parallel computers.

• With Intel kernels and communication libraries,
Trilinos provides optimal performance across all Intel
platforms.

54

